Bob likes formula,Now there is a formula:f=f+f+23+fff = f(x-1) + f(x-2) + 2sqrt{3+f cdot f}f=f+f+23+ff Give you f,f,M,n,xif, f, M, n, x_if,f,M,n,xi,Bob wants to know:modMleftbmod MmodM The date guarantees 3+ffsqrt{3 + f cdot f}3+ffis integer。
Bob likes formula,Now there is a formula:f(x)=f(x−1)+f(x−2)+23+f(n−1)⋅f(n−2)f(x) = f(x-1) + f(x-2) + 2sqrt{3+f(n - 1) cdot f(n - 2)}f(x)=f(x−1)+f(x−2)+23+f(n−1)⋅f(n−2) Give you f(0),f(1),M,n,xif(0), f(1), M, n, x_if(0),f(1),M,n,xi,Bob wants to know: (∏i=1nf(xi)) mod Mleft(prodlimits_{i=1}^{n} f(x_i)right)bmod M(i=1∏nf(xi))modM The date guarantees 3+f(n−1)⋅f(n−2)sqrt{3 + f(n - 1) cdot f(n - 2)}3+f(n−1)⋅f(n−2) is integer。

标签: HBC229651Travel 组合数学 排列组合Problem I. Fibonacci sequence题解